Optimized wave propagation for geophysics

MCIA day, 10 February 2014, Pau (France)

Lionel BOILLOT – INRIA Magique3D, Pau

Hélène BARUCQ, Julien DIAZ – INRIA Magique3D, Pau
 Henri CALANDRA – TOTAL E&P, Pau

Table of contents

Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

3 Runtime

- Direct Acyclic Graph
- Numerical results

1 Context and TOTAL framework

Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

B Runtime

- Direct Acyclic Graph
- Numerical results

4 Conclusion and perspectives

Context

Geophysics:

- Hydrocarbons detection: petroleum or natural gas
- Earth medium: seismic waves, heterogeneous complex domain

Simulation:

- Seismic imaging: find the subsurface layers
- Equations: elastic/acoustic wave in 2D/3D

Reverse Time Migration (RTM)

Iterative method based on multiple wave equation resolutions

TOTAL code

RTM for seismic imaging:

TOTAL code (Fortran2003)

DIVA: Depth Imaging Velocity Analysis / DIP

- acoustic/elastic waves
- 2D/3D domains
- heterogeneous complex media

Huge volume of data

Classical benchmark:

- $\bullet~2D:~10^5$ to 10^6 elements in hundreds of processors
- 3D: 10^7 to 10^8 elements in thousands of processors

 \Rightarrow needs to be massively-parallel

Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

B Runtime

- Direct Acyclic Graph
- Numerical results

4 Conclusion and perspectives

Elastic wave equation

Let us consider $\mathbf{x} \in \Omega$ and $t \in [0, T]$, the space and time variables

Velocity-stress formulation

$$\begin{cases} \rho(\mathbf{x})\partial_t \mathbf{v}(\mathbf{x},t) &= \nabla \underline{\underline{\sigma}}(\mathbf{x},t) \\ \partial_t \underline{\underline{\sigma}}(\mathbf{x},t) &= \underline{\underline{C}}(\mathbf{x}) : \underline{\underline{\epsilon}}(\mathbf{v}(\mathbf{x},t)) \end{cases}$$

- $v \in \mathbf{H}^1(\Omega \times [0, T])$, the unknown velocity field
- $\underline{\underline{\sigma}} \in \underline{\underline{H}}_{div}(\Omega \times [0, T])$, the stress tensor

 \underline{C} , the stiffness tensor: contains elasticity & anisotropy

$$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ & C_{22} & C_{23} \\ & & C_{33} \end{bmatrix}$$

(1)

(2)

Anisotropic elastodynamics

TTI: Tilted Transverse Isotropy

- Isotropic: sparse stiffness tensor \underline{C}
- VTI: same non-zero values (two TI parameters)
- TTI: rotation of VTI \Rightarrow dense tensor!

Geophysics anisotropy

Earth's crust (geological layers of rocks) is assumed to be locally polar anisotropic, also called transversely isotropic (TI).

Figure: Wavefronts for isotropy and transverse isotropy (vertical and tilted)

TTI example

Synthetic realistic case: [Duveneck & Bakker 2011]

TTI example

Synthetic realistic case: [Duveneck & Bakker 2011]

 \Rightarrow complex domains require to be more realistic!

Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

3 Runtime

4 Conclusion and perspectives

PMLs vs ABCs

Infinite geophysical domains compared to the wavelengths:

- Reduction of the computational domain to a box (source & receivers)
- Design of efficient boundary conditions (attenuate the reflections)

Two common ways:

Perfectly Matched Layers (PMLs), [Bérenger 1994, 1996]

Equation for a layer all around the problem domain \rightarrow easy to implement, instabilities may appear (anisotropy)

Absorbing Boundary Conditions (ABCs), [Enquist-Majda 1977, 1979]

Equation for the boundary of the problem domain

 \rightarrow stable, low-order easy to implement but not very accurate

RTM framework: spurious reflections considered as noise!

Figure: P-waves slowness curves of isotropic, VTI and TTI cases

Geometric way

- find a change of coordinate between slowness curve equations
- apply replacement on the isotropic ABCs to form TTI ABCs

Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

3 Runtime

4 Conclusion and perspectives

2D test case

- [10km × 10km] 200.000 cells
- Homogeneous medium
- P-waves source
- $V_p = 2500 m.s^{-1}, V_s = 1250 m.s^{-1}$
- VTI: $\varepsilon = 0.24, \ \delta = 0.01$
- TTI: θ = 30°

Figure: zoom on the mesh

Isotropic results

Figure: Velocity magnitude at different time steps of the simulation

< <>></>

TTI results

Figure: Velocity magnitude at different time steps of the simulation

э

TTI ABC versus simple ABCs

TTI medium only, with different kind of ABCs:

Figure: TTI ABC versus simple ABCs

 \Rightarrow TTI ABC is better than isotropic or VTI ABCs!

1 Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

3 Runtime

- Direct Acyclic Graph
- Numerical results

Conclusion and perspectives

Runtime

"Welcome to the jungle", Herb SUTTER, 2012

The jungle, a definition:

- Architectures: Xeon, Cell, MIC, KALRAY, GPU, FPGA, ...
- Memories: RAM, caches, (cc)NUMA, ...
- HowToDo (mainly): MPI, CUDA/OpenCL, OpenACC, ...

Runtime

Basic scheme

Classical approach:

- MPI over CPUs
- CUDA over GPUs

implies:

- big programming effort
- difficult to maintain
- hardware-dependent

Basic scheme

Runtime:

- abstraction layer
- hiding heterogeneity

Scheduler:

- where to execute
- when to execute

Memory:

- does the transfert
- guarantees consistency

< 3 >

Runtime

How to use runtimes?

fun1(A: inout, B: out)
fun2(B: in, C:out)
fun3(A: inout, C: in)

Task-based

- Describe the functions as tasks
- Form the dataflow: specify dependencies
- \Rightarrow creation of the DAG (Direct Acyclic Graph)

Context and TOTAL framework

• Direct Acyclic Graph

Numerical results

Basic COMPUTE and EXCHANGE model:

.∃ >

Basic COMPUTE and EXCHANGE model:

Basic COMPUTE and EXCHANGE model:

< ∃ >

Basic COMPUTE and EXCHANGE model:

э.

• • • • • • • • • • • •

Basic COMPUTE and EXCHANGE model:

(日) (同) (三) (三)

DAG of tasks for runtime

Runtime

- Direct Acyclic Graph
- Numerical results

Geophysics test case

Realistic test case:

- 3D elastic
- TTI (anisotropy)
- multi-layers

Hybrid discretization:

- unstructured tetrahedra
- P1-P2-P3 orders
- boundary conditions

Runtime Numerical results

Trace on one node -16 cores

Lionel BOILLOT (INRIA – TOTAL) Optimized wave propagation for geophysics

MCIA 2014 27 / 30

= 990

Speedup

MCIA 2014 28 / 30

Speedup

Speedup

MCIA 2014 28 / 30

1 Context and TOTAL framework

2 Anisotropic elastodynamics

- Absorbing Boundary Conditions
- Numerical results

B Runtime

- Direct Acyclic Graph
- Numerical results

4 Conclusion and perspectives

Conclusion and perspectives

First-order elastic wave equation

Conclusion:

- new 2D elliptic-TTI ABC
- runtime plugged in DIVA code

Perspectives:

- 3D TTI ABC, following the same technique
- Coprocessors Intel Xeon Phi (MIC)

Support by INRIA-TOTAL strategic action DIP (http://dip.inria.fr)